Learning Gated Bayesian Networks for Algorithmic Trading
نویسندگان
چکیده
Abstract. Gated Bayesian networks (GBNs) are a recently introduced extension of Bayesian networks that aims to model dynamical systems consisting of several distinct phases. In this paper, we present an algorithm for semi-automatic learning of GBNs. We use the algorithm to learn GBNs that output buy and sell decisions for use in algorithmic trading systems. We show how using the learnt GBNs can substantially lower risks towards invested capital, while at the same time generating similar or better rewards, compared to the benchmark investment strategy buy-and-hold.
منابع مشابه
Gated Bayesian networks for algorithmic trading
This paper introduces a new probabilistic graphical model called gated Bayesian network (GBN). This model evolved from the need to represent processes that include several distinct phases. In essence, a GBN is a model that combines several Bayesian networks (BNs) in such a manner that they may be active or inactive during queries to the model. We use objects called gates to combine BNs, and to ...
متن کاملBayesian Optimisation of Gated Bayesian Networks for Algorithmic Trading
Gated Bayesian networks (GBNs) are an extension of Bayesian networks that aim to model systems that have distinct phases. In this paper, we aim to use GBNs to output buy and sell decisions for use in algorithmic trading systems. These systems may have several parameters that require tuning, and assessing the performance of these systems as a function of their parameters cannot be expressed in c...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملAn Introduction to Inference and Learning in Bayesian Networks
Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014